JOMPAC

Journal of Medicine and Palliative Care (JOMPAC) is an open access scientific journal with independent, unbiased, and double-blind review under international guidelines. The purpose of JOMPAC is to contribute to the literature by publishing articles on health sciences and medicine.

EndNote Style
Index
Original Article
Association between leukocyte-based inflammatory indices and bone mineral density in hemodialysis patients
Aims: Osteoporosis and osteopenia are common among hemodialysis (HD) patients, yet current methods for risk stratification remain limited. This study aimed to investigate the relationship between leukocyte-based inflammatory indices and osteoporosis and osteopenia in HD patients and to assess their diagnostic performance in differentiating these conditions.
Methods: A retrospective analysis was conducted on 168 HD patients classified into normal bone mineral density (BMD) (n=43), osteopenia (n=70), and osteoporosis (n=55) based on T-scores by dual-energy X-ray absorptiometry measurements. The leukocyte-based inflammatory indices were calculated as follows: Platelet to lymphocyte ratio (PLR)=platelet count/lymphocyte count ratio; neutrophil o lymphocyte ratio (NLR)=neutrophil count/ lymphocyte count ratio; systemic immune inflammation index (SII)=platelet count×neutrophil count / lymphocyte count ratio, and systemic inflammation response index (SIRI)=neutrophil count×monocyte count/ lymphocyte count ratio.
Results: Osteopenia and osteoporosis were identified in 41.7% and 32.7% of patients, respectively. Patients with osteoporosis exhibited higher neutrophil and monocyte counts and lower lymphocyte counts (p<0.001). All inflammatory indices were higher in osteoporosis group compared to other group. Also, these indices were higher in osteopenia group compared to normal BMD group. SIRI showed the strongest discriminative power for differentiating osteopenia from normal BMD (AUC=0.84; sensitivity=81.4%; specificity=79.2%, p<0.001) and osteoporosis from osteopenia (AUC=0.86; sensitivity=82.5%; specificity=78.6%; p<0.001).
Conclusion: Leukocyte-based inflammatory indices, particularly SIRI, are significantly associated with reduced BMD in HD patients and may serve as accessible biomarkers for identifying those at heightened risk of osteopenia and osteoporosis.


1. Waziri B, Duarte R, Naicker S. Chronic kidney disease-mineral and bone disorder (CKD-MBD): current perspectives. Int J Nephrol Renovasc Dis. 2019;12:263-276. doi:10.2147/IJNRD.S191156
2. Huang GS, Chu TS, Lou MF, Hwang SL, Yang RS. Factors associated with low bone mass in the hemodialysis patients--a cross-sectional correlation study. BMC Musculoskelet Disord. 2009;10(1):60. doi:10.1186/ 1471-2474-10-60
3. Hu L, Napoletano A, Provenzano M, et al. Mineral bone disorders in kidney disease patients: the ever-current topic. Int J Mol Sci. 2022;23(20): 12223. doi:10.3390/ijms232012223
4. Nich C, Takakubo Y, Pajarinen J, et al. Macrophages-key cells in the response to wear debris from joint replacements. J Biomed Mater Res A. 2013;101(10):3033-3045. doi:10.1002/jbm.a.34599
5. Charles JF, Nakamura MC. Bone and the innate immune system. Curr Osteoporos Rep. 2014;12(1):1-8. doi:10.1007/s11914-014-0195-2
6. Loi F, Cordova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone. 2016;86:119-30. doi:10. 1016/j.bone.2016.02.020
7. Mazzaferro S, Cianciolo G, De Pascalis A, et al. Bone, inflammation and the bone marrow niche in chronic kidney disease: what do we know? Nephrol Dial Transplant. 2018;33(12):2092-2100. doi:10.1093/ndt/gfy115
8. Qian Q. Inflammation: a key contributor to the genesis and progression of chronic kidney disease. Contrib Nephrol. 2017;191:72-83. doi:10.1159/ 000479257
9. Zhou P, Zheng T, Zhao B. Cytokine-mediated immunomodulation of osteoclastogenesis. Bone. 2022;164:116540. doi:10.1016/j.bone.2022. 116540
10. D&#39;Amelio P, Sassi F. Osteoimmunology: from mice to humans. Bonekey Rep. 2016;5:802. doi:10.1038/bonekey.2016.29
11. Jiang Y, Bao X. Systemic immune-inflammatory indicators and bone mineral density in chronic kidney disease patients: a cross-sectional research from NHANES 2011 to 2018. PLoS One. 2024;19(4):e0302073. doi:10.1371/journal.pone.0302073
12. Şen Uzeli &Uuml;, Doğan M. The relationship between neutrophil lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), hemoglobin albumin lymphocyte and platelet (HALP) score and bone mineral density in hemodialysis Patients. J Orthop Res Rehab. 2024;2(1):5-8. doi:10.51271/JORR-0023
13. Chen S, Sun X, Jin J, Zhou G, Li Z. Association between inflammatory markers and bone mineral density: a cross-sectional study from NHANES 2007-2010. J Orthop Surg Res. 2023;18(1):305. doi:10.1186/s13018-023-03795-5
14. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry. 1972;18(6): 499-502. doi:10.1093/clinchem/18.6.499
15. Siris ES, Adler R, Bilezikian J, et al. The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporos Int. 2014;25(5):1439-1443. doi:10.1007/s00198-014-2655-z
16. Slouma M, Sahli H, Bahlous A, et al. Mineral bone disorder and osteoporosis in hemodialysis patients. Adv Rheumatol. 2020;60(1):15. doi:10.1186/s42358-020-0118-0
17. Polymeris A, Doumouchtsis K, Grapsa E. Bone mineral density and bone metabolism in hemodialysis patients. Correlation with PTH, 25OHD3 and leptin. Nefrologia. 2012;32(1):73-78. doi:10.3265/Nefrologia.pre2011.Jul.10916
18. Tamimi R, Bdair A, Shratih A, et al. Bone mineral density and related clinical and laboratory factors in peritoneal dialysis patients: implications for bone health management. PLoS One. 2024;19(5):e0301814. doi:10. 1371/journal.pone.0301814
19. Binici DN, Gunes N. Risk factors leading to reduced bone mineral density in hemodialysis patients with metabolic syndrome. Ren Fail. 2010;32(4):469-474. doi:10.3109/08860221003675260
20. Sprague SM, Martin KJ, Coyne DW. Phosphate balance and CKD-mineral bone disease. Kidney Int Rep. 2021;6(8):2049-2058. doi:10.1016/j.ekir.2021.05.012
21. Hsu CY, Chen LR, Chen KH. Osteoporosis in patients with chronic kidney diseases: a systemic review. Int J Mol Sci. 2020;21(18):6846. doi: 10.3390/ijms21186846
22. Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol. 2011;6(1):121-145. doi:10.1146/annurev-pathol-011110-130203
23. Aguilar A, Gifre L, Urena-Torres P, et al. Pathophysiology of bone disease in chronic kidney disease: from basics to renal osteodystrophy and osteoporosis. Front Physiol. 2023;14:1177829. doi:10.3389/fphys. 2023.1177829
24. Cobo G, Lindholm B, Stenvinkel P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol Dial Transplant. 2018;33(suppl_3): iii35-iii40. doi:10.1093/ndt/gfy175
25. Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 2008;29(4):403-440. doi:10.1210/er.2007-0038
26. Mazzaferro S, De Martini N, Rotondi S, et al. Bone, inflammation and chronic kidney disease. Clinica Chimica Acta. 2020;506:236-240. doi: 10.1016/j.cca.2020.03.040
27. Hong J, Luo F, Du X, Xian F, Li X. The immune cells in modulating osteoclast formation and bone metabolism. Int Immunopharmacol. 2024;133:112151. doi:10.1016/j.intimp.2024.112151
28. Li Y, Hao W, Guan J, et al. Relationship between indices of circulating blood cells and bone homeostasis in osteoporosis. Front Endocrinol (Lausanne). 2022;13:965290. doi:10.3389/fendo.2022.965290
29. Valderrabano RJ, Lui LY, Lee J, et al. Bone density loss is associated with blood cell counts. J Bone Miner Res. 2017;32(2):212-220. doi:10.1002/jbmr.3000
30. Su YJ, Chen CT, Tsai NW, et al. The role of monocyte percentage in osteoporosis in male rheumatic diseases. Am J Mens Health. 2017;11(6): 1772-1780. doi:10.1177/1557988317721642
31. Schyrr F, Marques-Vidal P, Hans D, Lamy O, Naveiras O. Differential blood counts do not consistently predict clinical measurements of bone mineral density and microarchitecture at homeostasis. JBMR Plus. 2022;6(9):e10669. doi:10.1002/jbm4.10669
32. Liu YC, Yang TI, Huang SW, Kuo YJ, Chen YP. Associations of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio with osteoporosis: a meta-analysis. Diagnostics (Basel). 2022;12(12):2968. doi:10.3390/diagnostics12122968
33. Ban TH, Choi BS, Yoon SA, et al. Clinical significance of neutrophil-to-lymphocyte ratio on the risk of abdominal aortic calcification and decreased bone mineral density in patients with end-stage kidney disease. PLoS One. 2023;18(10):e0286612. doi:10.1371/journal.pone. 0286612
34. Xue J, Xu L, Zhu H, et al. CD14(+)CD16(-) monocytes are the main precursors of osteoclasts in rheumatoid arthritis via expressing Tyro3TK. Arthritis Res Ther. 2020;22(1):221. doi:10.1186/s13075-020-02308-7
35. Ma H, Cai X, Hu J, et al. Association of systemic inflammatory response index with bone mineral density, osteoporosis, and future fracture risk in elderly hypertensive patients. Postgrad Med. 2024;136(4):406-416. doi: 10.1080/00325481.2024.2354158
36. Chen Y, Yu J, Shi L, et al. Systemic inflammation markers associated with bone mineral density in perimenopausal and postmenopausal women. J Inflamm Res. 2023;16:297-309. doi:10.2147/JIR.S385220
Volume 6, Issue 2, 2025
Page : 131-137
_Footer