JOMPAC

Journal of Medicine and Palliative Care (JOMPAC) is an open access scientific journal with independent, unbiased, and double-blind review under international guidelines. The purpose of JOMPAC is to contribute to the literature by publishing articles on health sciences and medicine.

EndNote Style
Index
Original Article
Diagnostic performance of whole blood viscosity indices in predicting the presence and severity of coronary artery disease
Aims: Growing evidence suggests that blood viscosity plays a crucial role in both the development and acceleration of atherosclerosis. In this study, aimed to investigate the diagnostic performance of the mean platelet volume-age-total protein-hematocrit (MAPH) score, a new index for blood viscosity, in predicting the presence and severity of CAD in patients with suspected coronary artery disease (CAD).
Methods: We retrospectively evaluated 431 patients who underwent coronary angiography. SYNTAX score (SS) were divided into 3 groups; low group (<22), intermediate group (22-32) and, high group (?32). Low (LSR) and and high (HSR) shear rates were derived using values of total protein and hematocrit. The MAPH score was calculated based on the threshold values of mean platelet volume, age, total protein, and hematocrit for predicting CAD.
Results: The median LSR (60.7 vs. 43.1, p<0.001), mean HSR (17.3±1.3 vs. 16.2±1.2, p<0.001), and mean MAPH score (2.7±0.8 vs. 1.6±0.5, p<0.001) were higher in the CAD group compared to the non-CAD group. These indices of blood viscosity were found to be higher in the intermediate-high SS group compared to the low SS group. The threshold value of MAPH score for predicting CAD was >2 (sensitivity=78.2%, specificity=70.0%). It also had a graduated threshold value (>3, sensitivity=71.1%, specificity=62.5%) in distinguishing intermediate-high SS than low SS groups. In predicting both the presence and severity of CAD, the MAPH score exhibited superior diagnostic performance relative to the levels of LSR and HSR.
Conclusion: In patients with suspected CAD, a gradual increase in the MAPH score demonstrated significant diagnostic performance in distinguishing both the presence and severity of CAD. In these patients, the MAPH score may serve as a potential screening tool and can be utilized for risk stratification.


1. Turchetti G, Kroes MA, Lorenzoni V, et al. The cost-effectivenessof diagnostic cardiac imaging for stable coronary artery disease.Expert Rev Pharmacoecon Outcomes Res. 2015;15(4):625-633.doi: 10.1586/14737167.2015.1051037
2. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H.Atherosclerosis: process, indicators, risk factors and new hopes.Int J Prev Med. 2014;5(8):927-946.
3. Wang L, Tang C. Targeting platelet in atherosclerosis plaqueformation: current knowledge and future perspectives. Int J MolSci. 2020;21(24):9760. doi: 10.3390/ijms21249760
4. Soulis JV, Farmakis TM, Giannoglou GD, et al. Molecular viscosity inthe normal left coronary arterial tree. Is it related to atherosclerosis?Angiol. 2006;57(1):33-40. doi: 10.1177/000331970605700105
5. Lowe GD, Lee AJ, Rumley A, Price JF, Fowkes FG. Bloodviscosity and risk of cardiovascular events: the Edinburgh ArteryStudy. Br J Haematol. 1997;96(1):168-173. doi: 10.1046/j.1365-2141.1997.8532481.x
6. de Simone G, Devereux RB, Chien S, Alderman MH, AtlasSA, Laragh JH. Relation of blood viscosity to demographicand physiologic variables and to cardiovascular risk factors inapparently normal adults. Circulation. 1990;81(1):107-117. doi:10.1161/01.cir.81.1.107
7. Mazzi V, De Nisco G, Hoogendoorn A, et al. Early atheroscleroticchanges in coronary arteries are associated with endotheliumshear stress contraction/expansion variability. Ann Biomed Eng.2021;49(9):2606-2621. doi: 10.1007/s10439-021-02829-5
8. Arzani A. Coronary artery plaque growth: a two-way coupledshear stress-driven model. Int J Numer Method Biomed Eng.2020;36(1):e3293. doi: 10.1002/cnm.3293
9. Higuchi Y. Influence of arterial occlusion on hematocrit andplasma protein concentration of femoral venous blood in rabbit.Jpn J Physiol. 1985;35(3):503-511. doi: 10.2170/jjphysiol.35.503
10. Khan HU, Khan MU, Noor MM, Hayat U, Alam MA. Coronaryartery disease pattern: a comparision among different age groups.J Ayub Med Coll Abbottabad. 2014;26(4):466-469.
11. Pafili K, Penlioglou T, Mikhailidis DP, Papanas N. Meanplatelet volume and coronary artery disease. Curr Opin Cardiol.2019;34(4):390-398. doi: 10.1097/HCO.0000000000000624
12. Bapir M, Untracht GR, Hunt JEA, et al. Age-dependent decline incommon femoral artery flow-mediated dilation and wall shear stressin healthy subjects. Life. 2022;12(12):2023. doi: 10.3390/life12122023
13. Kanda H, Yamakuchi M, Matsumoto K, et al. Dynamic changesin platelets caused by shear stress in aortic valve stenosis. ClinHemorheol Microcirc. 2021;77(1):71-81. doi: 10.3233/CH-200928
14. Cakmak Karaaslan O, Coteli C, Ozilhan MO, et al. The predictivevalue of MAPH score for determining thrombus burden inpatients with non-ST segment elevation myocardial infarction.Egypt Heart J. 2022;74(1):60. doi: 10.1186/s43044-022-00299-1
15. Abacioglu OO, Yildirim A, Karadeniz M, et al. A new score fordetermining thrombus burden in STEMI patients: the MAPHscore. Clin Appl Thromb Hemost. 2022;28:10760296211073767.doi: 10.1177/10760296211073767
16. Akhan O, Kış M. A novel &ldquo;mean platelet volume-age-totalprotein-hematocrit (MAPH)&rdquo; score for blood viscosity: predictivecapabilities for coronary slow-flow phenomenon. EJCM.2023;11(2):70-77. doi: 10.32596/ejcm.galenos.2023.2023-01-05
17. Peerwani G, Aijaz S, Sheikh S, Virani SS, Pathan A. Predictors ofnon-obstructive coronary artery disease in patients undergoingelective coronary angiography. Glob Heart. 2023;18(1):26. doi:10.5334/gh.1204
18. Ezhumalai B, Jayaraman B. Angiographic prevalence andpattern of coronary artery disease in women. Indian Heart J.2014;66(4):422-426. doi: 10.1016/j.ihj.2014.05.009
19. Friedewald WT, Levy RI, Fredrickson DS. Estimation of theconcentration of low-density lipoprotein cholesterol in plasma,without use of the preparative ultracentrifuge. Clin Chem.1972;18(6):499-502.
20. de Simone G, Devereux RB, Chinali M, Best LG, Lee ET,Welty TK. Association of blood pressure with blood viscosityin American Indians: the Strong Heart Study. Hypertension.2005;45(4):625-630. doi: 10.1161/01.HYP.0000157526.07977.ec
21. Serruys PW, Onuma Y, Garg S, et al. Assessment of the SYNTAXscore in the Syntax study. EuroIntervention. 2009;5(1):50-56. doi:10.4244/eijv5i1a9
22. He JQ, Gao YC, Yu XP, et al. Syntax score predicts clinicaloutcome in patients with three-vessel coronary artery diseaseundergoing percutaneous coronary intervention. Chin Med J.2011;124(5):704-709.
23. Morice MC. Has the SYNTAX score become obsolete? J Am CollCardiol. 2018;72(12):1330-1331. doi: 10.1016/j.jacc.2018.07.023
24. Yokota S, Ottervanger JP, Mouden M, Timmer JR, Knollema S, JagerPL. Prevalence, location, and extent of significant coronary arterydisease in patients with normal myocardial perfusion imaging. JNucl Cardiol. 2014;21(2):284-290. doi: 10.1007/s12350 -013-9837-5
25. Ouellette ML, Loffler AI, Beller GA, Workman VK, Holland E,Bourque JM. Clinical characteristics, sex differences, and outcomesin patients with normal or near-normal coronary arteries, non-obstructive or obstructive coronary artery disease. J Am HeartAssoc. 2018;7(10):e007965. doi: 10.1161/JAHA. 117.007965
26. Jebari-Benslaiman S, Galicia-Garcia U, Larrea-Sebal A, et al.Pathophysiology of atherosclerosis. Int J Mol Sci. 2022;23(6):3346.doi: 10.3390/ijms23063346
27. Rodriguez I, Gonzalez M. Physiological mechanisms of vascularresponse induced by shear stress and effect of exercise in systemicand placental circulation. Front Pharmacol. 2014;5:209. doi:10.3389/fphar.2014.00209
28. Ando J, Yamamoto K. Vascular mechanobiology: endothelial cellresponses to fluid shear stress. Circ J. 2009;73(11):1983-1992. doi:10.1253/circj.cj-09-0583
29. Ishibazawa A, Nagaoka T, Takahashi T, et al. Effects of shear stresson the gene expressions of endothelial nitric oxide synthase,endothelin-1, and thrombomodulin in human retinal microvascularendothelial cells. Invest Ophthalmol Vis Sci. 2011;52(11):8496-8504.doi: 10.1167/iovs.11-7686
30. Yagi H, Sumino H, Aoki T, et al. Impaired blood rheology isassociated with endothelial dysfunction in patients with coronaryrisk factors. Clin Hemorheol Microcirc. 2016;62(2):139-150. doi:10.3233/CH-151960
31. Kumar A, Hung OY, Piccinelli M, et al. Low coronary wall shearstress is associated with severe endothelial dysfunction in patientswith nonobstructive coronary artery disease. JACC CardiovascInterv. 2018;11(20):2072-2080. doi: 10.1016/j.jcin.2018.07.004
32. Cowan AQ, Cho DJ, Rosenson RS. Importance of blood rheologyin the pathophysiology of atherothrombosis. Cardiovasc DrugsTher. 2012;26(4):339-348. doi: 10.1007/s10557-012-6402-4
33. Cekirdekci EI, Bugan B. Whole blood viscosity in microvascularangina and coronary artery disease: significance and utility.Rev Port Cardiol (Engl Ed). 2020;39(1):17-23. doi: 10.1016/j.repc.2019.04.008
34. Becker RC. The role of blood viscosity in the developmentand progression of coronary artery disease. Cleve Clin J Med.1993;60(5):353-358. doi: 10.3949/ccjm.60.5.353
35. Ceyhun G, Birdal O. Relationship between whole blood viscosityand lesion severity in coronary artery disease. Int J Angiol.2021;30(2):117-121. doi: 10.1055/s-0040-1720968
36. Karaman H, Karakukcu C, Kocer D. Can mean platelet volumeserve as a marker for prostatitis? Int J Med Sci. 2013;10(10):1387-1391. doi: 10.7150/ijms.6126
37. Senen K, Topal E, Kilinc E, et al. Plasma viscosity and meanplatelet volume in patients undergoing coronary angiography.Clin Hemorheol Microcirc. 2010;44(1):35-41. doi: 10.3233/CH-2010-1249
38. Nader E, Skinner S, Romana M, et al. Blood rheology: keyparameters, impact on blood flow, role in sickle cell disease andeffects of exercise. Front Physiol. 2019;10:1329. doi: 10.3389/fphys.2019.01329
39. Fornal M, Korbut RA, Lekka M, et al. Rheological properties oferythrocytes in patients with high risk of cardiovascular disease.Clin Hemorheol Microcirc. 2008;39(1-4):213-219.
40. Sumino H, Nara M, Seki K, et al. Effect of antihypertensive therapyon blood rheology in patients with essential hypertension. J IntMed Res. 2005;33(2):170-177. doi: 10.1177/147323000503300204
41. Irace C, Cutruzzola A, Parise M, et al. Effect of empagliflozinon brachial artery shear stress and endothelial function insubjects with type 2 diabetes: results from an exploratorystudy. Diab Vasc Dis Res. 2020;17(1):1479164119883540. doi:10.1177/1479164119883540
42. Yurdam FS, Kis M. The relationship between TIMI flow andMAPH score in patients undergoing primary percutaneouscoronary intervention for STEMI. Int Heart J. 2023;64(5):791-797. doi: 10.1536/ihj.23-024
43. Sadr-Ameli MA, Saedi S, Saedi T, Madani M, Esmaeili M,Ghardoost B. Coronary slow flow: benign or ominous? Anatol JCardiol. 2015;15(7):531-535. doi: 10.5152/akd.2014.5578
44. Huang Q, Zhang F, Chen S, Dong Z, Liu W, Zhou X. Clinicalcharacteristics in patients with coronary slow flow phenomenon:a retrospective study. Medicine. 2021;100(6):e24643. doi: 10.1097/MD.0000000000024643
Volume 5, Issue 1, 2024
Page : 48-56
_Footer